Главная страница Наука Образование Ссылки Карта сайта Автор

5.3. Свойства наиболее применяемых диэлектриков.

5.3.1. Полимерные материалы.

Полимеры, как правило, являются хорошими диэлектриками. Они обладают низкими диэлектрическими потерями, высоким удельным сопротивлением, высокой электрической прочностью, высокой технологичностью и, как правило, невысокой ценой. Кроме того, на основе полимеров с дисперсными добавками различной электропроводности, теплопроводности, магнитной проницаемости, диэлектрической проницаемости, твердости и т.п. можно получать разнообразные композиционные материалы с широким спектром свойств. По технологическим признакам полимерные материалы делятся на 2 класса - термопласты и реактопласты.

Термопласты - размягчаются при нагревании, что позволяет использовать простую технологию термопрессования. При этом гранулы исходного полимера помещают в камеру термопласт - автомата, нагревают до температуры размягчения, прессуют и охлаждают. Так делают мелкие диэлектрические детали. Для крупногабаритных изделий, типа кабелей, полутвердый расплав выдавливают через фильеру вместе с внутренним электродом кабеля.

Наиболее распространенным диэлектриком этого класса является полиэтилен H-(CH2)nH. Полиэтилен производят путем полимеризации газа этилена при повышенных давлениях и температурах. В основном используются две технологии. Исторически первой была технология получения полиэтилена при высоком давлении до 250 МПа и температуре до 300 ° С с помощью инициирующих агентов-окислителей. При этом получается т.н. полиэтилен высокого давления ПЭВД, для которого используется и другое название - полиэтилен низкой плотности (ПЭНП). В настоящее время более распространена технология получения полиэтилена с помощью катализаторов при невысоком давлении до 1 МПа, невысокой температуре до 80 ° С. При этом получается т.н. полиэтилен низкого давления ПЭНД, для которого используется и другое название - полиэтилен высокого плотности (ПЭВП). Главное отличие полученных продуктов с физико-химической точки зрения - повышенная водостойкость ПЭНД по сравнению с ПЭВД. Другие характеристики практически одинаковы: удельное сопротивление 1014-1015 Ом·м, удельное поверхностное сопротивление 1015 Ом, диэлектрическая проницаемость 2.2-2.4, тангенс угла диэлектрических потерь 10-4, электрическая прочность 45-55 кВ/мм, теплопроводность 0.3-0.4 Вт/(м·К), теплоемкость 2 кДж/(кг·К), плотность 920-960 кг/м3. Класс нагревостойкости Y. Полиэтилен широко используют в качестве силовой электрической изоляции в кабелях, в особенности т.н. "сшитый" полиэтилен. (В зарубежной литературе - cross-linked polyethylene). Его получают либо облучением высокоэнергетичными частицами (электронами, фотонами, тяжелыми частицами), либо вулканизацией. При этом образуется пространственная сетка, подобно тому, как это реализуется в резине. Модифицированный материал может эксплуатироваться при температуре до 200 ° С, кроме того, он становится более стойким по отношению к агрессивным средам и растворителям, механически более прочным, его удельное сопротивление повышается примерно на два порядка.

Из других термопластичных полимеров, используемых в энергетике в виде электроизоляционных пленок отметим полипропилен, поливинилхлорид, лавсан.

Рядом уникальных свойств обладает фторопласт (политетрафторэтилен). Он химически инертен, не растворяется в растворителях, вплоть до температуры 260 ° С, абсолютно не смачивается водой, не гигроскопичен. Недостатки - не стоек под действием радиации, обладает хладотекучестью.

Реактопласты - при нагревании не размягчаются, после достижения некоторой температуры начинаются разрушаться. Изделия из них обычно делают различными способами. Одна из распространенных дешевых технологий заключается в следующем. Сначала готовят пресс-порошки полимера. Затем пресс порошок засыпают в пресс-форму и прессуют при определенном давлении и температуре. При этом возникает сцепление между деформированными частицами, и после охлаждения материал готов к использованию. Возможно проведение полимеризации из исходных компонентов в заранее подготовленных формах. Так делают изделия из эпоксидных полимеров, кремнийорганической резины.

Достаточно дешевы и технологичны реактопласты на основе фенолформальдегидных полимеров (бакелит) и аминоформальдегидных полимеров. Их электрофизические характеристики невысоки.

Эпоксидные полимеры обладают хорошей механической прочностью, удовлетворительными электрофизическими характеристиками. Они являются полярными диэлектриками, некоторые марки эпоксидных материалов имеют диэлектрическую проницаемость до 16. Высокая полярность приводит к слабой водостойкости. Главное преимущество эпоксидных компаундов - простота технологии приготовления. Компаунды холодного отвержения получают смешиванием эпоксидной смолы, отвердителя и пластификатора. В период времени до начала твердения (от минут до часов) жидкую композицию можно заливать в требуемую форму. Часто компаунд используют для ремонта диэлектрических деталей в качестве клея.

Из других полимеров-реактопластов отметим диэлектрический материал с высокой механической прочностью - капролон, с большим диапазоном рабочих температур (-100° С до +250° С) - полиимиды и композиты на их основе.

Главная страница Наука Образование Ссылки Карта сайта Автор

Hosted by uCoz