Главная страница Наука Образование Ссылки Карта сайта Автор   

 Электротехнические материалы

Лекция 12  

Магнитные материалы

 В этой лекции будут рассмотрены следующие вопросы:

12.1. Общие характеристики магнитных материалов. Определения. Кривая намагничивания, гистерезис, индукция насыщения, коэрцитивная сила. Магнитомягкие и магнитотвердые материалы. Магнитные потери.

12.2. Виды магнитных материалов. Применение магнитных материалов в энергетике. Свойства наиболее применяемых материалов.  Электротехнические стали. Ферриты. Магнитодиэлектрики.

 


12.1. Общие характеристики магнитных материалов.

в начало лекции


         Магнитные свойства имеются у любых материалов. Они обусловлены реакцией материала на магнитное поле. Как уже рассматривалось в третьей лекции, магнитную индукцию в любом материале можно связать с напряженностью магнитного поля в нем

B = m0×m×H                                                                                                         (12.1)

Глобально, по отношению к магнитному полю,  материалы можно разделить на три класса - диамагнетики, парамагнетики,  ферромагнетики. Последние можно еще поделить на собственно ферромагнетики,  антиферромагнетики и  ферримагнетики.

Диамагнетики имеют магнитную проницаемость чуть меньше 1. Отличаются тем, что выталкиваются из области магнитного поля.

           Парамагнетики имеют магнитную проницаемость чуть более 1. Подавляющее количество материалов являются диа- и пара- магнетиками.

           Ферромагнетики обладают исключительно большой магнитной проницаемостью, доходящей до миллиона.  

Для ферромагнитных материалов выражение (12.1) справедливо с большими оговорками. Оно верно для слабых магнитных полей. По мере усиления поля проявляется явление гистерезиса, когда при увеличении напряженности и при последующем уменьшении напряженности значения В(Н) не совпадают друг с другом. При этом выражение (12.1) имеет смысл только для подъем напряженности в течение первого цикла намагничивания. В литературе различают несколько определений магнитной проницаемости.

Начальная магнитная проницаемость mн - значение магнитной проницаемости при малой напряженности поля.

Максимальная магнитная проницаемость mmax - максимальное значение магнитной проницаемости, которое достигается обычно в средних магнитных полях.

Из других основных терминов, характеризующих магнитные материалы, отметим следующие.

Намагниченность насыщения  - максимальная намагниченность, которая достигается в сильных полях, когда все магнитные моменты доменов ориентированы вдоль магнитного поля.

Петля гистерезиса - зависимость индукции от напряженности магнитного поля при изменении поля по циклу: подъем до определенного значения - уменьшение,  переход через нуль, после достижения того же значения с обратным знаком - рост и т.п.

Максимальная петля гистерезиса - достигающая максимальной намагниченности насыщения.

 Остаточная индукция Bост - индукция магнитного поля на обратном ходе петли гистерезиса при нулевой напряженности магнитного поля.

Коэрцитивная сила Нс - напряженность поля на обратном ходе петли гистерезиса при которой достигается нулевая индукция.

При каждом цикле перемагничивания часть магнитной энергии, запасаемой в материале (W = BH/2) теряется, т.е. переходит в тепло. Эти потери называются потерями на перемагничивание и они пропорциональны площади кривой гистерезиса. Для материалов, используемых в энергетике, в особенности для трансформаторов, потери энергии желательно уменьшить, т.е. уменьшить площадь кривой. Это может быть достигнуто, если коэрцитивная сила будет как можно меньше.

Материалы с малой коэрцитивной силой, меньше 40 А/м называются магнитомягкими материалами.

Мощность потерь на перемагничивание в таких материалах можно оценить по выражению

PH = Bnmax×f×V                                                                                   (12.2)

где h - коэффициент, зависящий от материала, Bmax- максимальная индукция за цикл, f- частота, V - объем тела, n, - показатель, меняющийся в диапазоне от 1.6 до 2..

Другая составляющая потерь связана с вихревыми токами, возникающими в переменных магнитных полях.

PH= B2max×f2×V                                                                                  (12.3)

На высоких частотах важны, в первую очередь, потери на вихревые токи, т.к. они пропорциональны второй степени частоты.

Иногда в справочниках приводят значения тангенса магнитных потерь. Физический смысл его такой же, как и у тангенса угла диэлектрических потерь, а именно

P= L×I2× w× tg dm                                                                                        (12.4)

или для удельных потерь

           Pуд= m0×m×H2 w× tg dm                                                                           (12.5)

Материалы с большой коэрцититивной силой (более 1000 А/м) называются магнитотвердыми материалами. Они используются в качестве постоянных магнитов.


12.2. Виды магнитных материалов. Применение магнитных материалов в энергетике. Свойства наиболее применяемых материалов.  Электротехнические стали. Ферриты. Магнитодиэлектрики.

в начало лекции


           Магнитомягкие материалы используются в энергетике в качестве разнообразных магнитопроводов в трансформаторах, электрических машинах, электромагнитах и т.д.

Для уменьшения потерь на гистерезис выбирают материалы с пониженной коэрцитивной силой, а для уменьшения вихревых токов магнитопроводы собирают из отдельных пластин и используют металлы с повышенным удельным сопротивлением. Дело в том, что ЭДС самоиндукции, благодаря которой возникают вихревые токи, пропорциональна площади поперечного сечения контура. При рассечении площади n изолированными пластинами в каждой пластине наводится уменьшенная в n раз ЭДС. Мощность потерь при протекании вихревого тока пропорциональна квадрату напряжения (ЭДС) и обратно пропорциональна удельному сопротивлению. Поэтому уменьшение ЭДС в каждой из отдельных пластин и использование металлов с повышенным удельным сопротивлением приводит к уменьшению общих потерь.

Основой наиболее широко используемых в электротехнике магнитных материалов является низкоуглеродистая электротехническая сталь. Она выпускается в виде листов, толщиной от 0.2 мм до 4 мм, содержит не выше 0.04% углерода и не выше 0.6% других примесей. Максимальное значение магнитной проницаемости mmax ~ 4000,  коэрцитивной силы Нс~ 65-100 А/м. Наблюдается интересная закономерность: чем чище железо и чем лучше оно отожжено - тем выше магнитная проницаемость и тем ниже коэрцитивная сила. Для особо чистого железа эти параметры составляют: более 1 миллиона и менее 1 А/м, соответственно.

Добавлением в состав кремния достигается повышение удельного сопротивления стали с 0.14 мкОм·м для нелегированной стали до 0.6 мкОм·м для высоколегированной стали. Это дает уменьшение потерь.

Электротехническую сталь маркируют следующим образом: первая цифра-структура (1-горячекатанная изотропная, 2-холоднокатанная изотропная, 3- холоднокатанная анизотропная с ребровой структурой), вторая цифра- содержание кремния (0-до 0.4%, 1 - до 0.8%. 2 - до 1.8%, 3-до 2.8%, 4 - до 3.8%, 4 - до 4.8%), третья цифра - тип нормируемых магнитных характеристик (0- удельные потери при В=1.7 Тл, f=50 Гц, 1- удельные потери при В=1.5 Тл, f=50 Гц, 2- удельные потери при В=1 Тл, f=400 Гц, 6- В при Н=0.4 А/м, 7- В в средних полях при Н=10 А/м ). Четвертая цифра в старых справочниках означала номер материала. В современных справочниках четвертая и пятая цифры являются одним числом, означающим численную характеристику нормируемого параметра.

Если к железу добавить никель, то полученные материалы будут обладать повышенной магнитной проницаемостью (до 100000 у 79НМ, 79% никеля и небольшое количество марганца). Такие сплавы называются пермаллои, они используются для изготовления сердечников малогабаритнгых силовых и импульсных трансформаторов. Практически такие же результаты по магнитной проницаемости можно получить, добавляя к железу кремний (9.5%) и алюминий(5.6%). Такие сплавы называются альсиферами.

Добавки к железу и никелю молибдена, хрома, меди приводит к еще большему росту начальной магнитной проницаемости, более 100 тысяч. Такие материалы используются в миниатюрных магнитных устройствах.

Практически отсутствуют потери на вихревые токи в ферритах. Дело в том, что ферриты представляют собой оксидную керамику МеО+Fe2O3, которая является диэлектриком, либо полупроводником. Типичное удельное сопротивление феррита 103-104 Ом.м. Это на 9-10 порядков превышает сопротивление металлов. Ясно, что вихревые токи в таком материале не возникнут.  Магнитная проницаемость у ферритов обычно ниже, чем у стали и не превышает нескольких сотен, хотя есть ферриты с проницаемостью до нескольких тысяч (20000НМ, 1000НМ). Применение в энергетике магнитомягких ферритов - высокочастотные трансформаторы, в ряде материалов потери малы вплоть до частот гигагерцового диапазона. Однако при этом и магнитная проницаемость уменьшается до десятков (9ВЧ, 50ВЧ3). 

Большую роль играют ферриты с прямоугольной петлей гистерезиса (ППГ). Они используются в качестве логических элементов в ЗУ, в качестве термодатчиков. Основной параметр - коэффициент прямоугольности петли гистерезиса, представляющий собой отношение остаточной индукции к максимальной, измеренной при Н = 5 Нс. Желательно, чтобы этот коэффициент был ближе к 1.

 

 

 

Список лекций 

  1. Введение в предмет.

  2. Электрофизические характеристики материалов. Электропроводность.

  3. Электрофизические характеристики материалов. Диэлектрическая и магнитная проницаемости.

  4. Теплофизические и механические характеристики материалов.

  5. Конструкционные материалы.

  6. Проводниковые материалы.

  7. Слабопроводящие материалы.

  8. Электропроводность и потери в диэлектриках.

  9. Процессы в диэлектриках по действием сильных электрических полей.

  10. Газообразные  и жидкие  диэлектрики.

  11. Твердые диэлектрики.

  12. Магнитные материалы.

  13. Сверхпроводящие материалы.

  14. Долговечность и старение материалов в условиях воздействующих факторов.

  15. Испытания материалов.

 

 

Главная страница Наука Образование Ссылки Карта сайта Автор 

Hosted by uCoz